Froome’s data on Strava

Screen Shot 2018-01-29 at 14.59.39

Chris Froome has been logging data on Strava since the beginning of the year. He had already completed over 4,500km, around Johannesburg, in the first four weeks of January. The weather has been hot and he has been based at an altitude of around 1350m. Some have speculated that he has been replicating the conditions of a grand tour, so that measurements can be made that may assist in his defence against the adverse analytical finding made at last year’s Vuelta.

Whatever the reasons, Froome chose to “Empty the tank” with epic ride on 28 January, completing 271km in just over six hours at an average of 44.8kph. The activity was flagged on Strava, presumably because he completed it suspiciously fast. For example, he rode the 20km Back Straight segment at 50.9kph, finishing in 24:24, nearly four minutes faster than holder of the the KOM: a certain Chris Froome. Since there was no significant wind blowing, one can only assume he was being motor-paced.

One interesting thing about rides displayed publicly on Strava is that anyone can download a GPX file of the route, which shows the latitude, longitude and altitude of the rider, typically at one second intervals. Although Froome is one of the professional riders who prefer to keep their power data private, this blog explores the possibility of estimating power from the  GPX file. The plan is similar to the way Strava estimates power.

  1. Calculate the rider’s speed from changes in position
  2. Calculate the gradient of the road from changes in altitude
  3. Estimate air density from historic weather reports
  4. Make assumptions about rider/bike mass, aerodynamic drag, rolling resistance
  5. Estimate power required to ride at estimated speed

Knowledge is power

FroomeyTT

An interesting case study is Froome’s TT Bike Squeeeeze from 6 January, which included a sustained 2 hour TT effort. Deriving speed and gradient from the GPX file is straightforward, though it is helpful to include smoothing (say, a five second average) to iron out noise in the recording. It is simple to check the average speed and charts against those displayed on Strava.

Several factors affect air density. Firstly, we can obtain the local weather conditions from sources, such as Weather Underground. Froome set off at 6:36am, when it was still relatively cool, but he Garmin shows that it warmed up from 18 degrees to 40 degrees during the ride. Taking the average of 29 for the whole ride simplifies matters. Air pressure remained constant at around 1018hPa, but this is always quoted for sea level, so the figure needs to be adjusted for altitude. Froome’s GPS recorded an altitude range from 1242m to 1581m. However we can see that his starting altitude was recorded as 1305m, when the actual altitude of this location was 1380m. We conclude that his average altitude for the ride, recorded at 1436m, needs to be corrected by 75m to 1511m and opt to use this as an elevation adjustment for the whole ride. This is important because the air is sufficiently less dense at this altitude to have a noticeable impact on aerodynamic drag.

An estimate of power requires some additional assumptions. Froome uses his road bike, TT bike and mountain bike for training, sometimes all in the same ride, and we suspect some rides are motor-paced. However, he indicates that the 6 January ride was on the TT bike. So a CdA of 0.22 for drag and a Crr of 0.005 for rolling resistance seem reasonable. Froome weighs about 70kg and fair assumptions were taken for the spec of his bike. Finally, the wind was very light, so it was ignored in the calculations.

Screen Shot 2018-01-29 at 14.32.39

Under these assumptions, Froome’s estimated average power was 205W. The red shaded area marks a 2 hour effort completed at 43.7kph, with a higher average power of 271W. His maximal average power sustained over one hour was 321W or 4.58W/kg. There is nothing adverse about these figures; they seem to be eminently within the expected capabilities of the multiple grand tour winner.

Of course, quite a few assumptions went into these calculations, so it is worth identifying the most important ones. The variation of temperature had a small effect: the whole ride at 18 degrees would have required an average of 209W or, at 40 degrees, 201W. Taking account of altitude was important: the same ride at sea level would have required 230W, but the variations in altitude during the ride were not significant. At the speeds Froome was riding, aerodynamics were important: a CdA of 0.25 would have needed 221W, whereas a super-aero CdA of 0.20 rider could have done 195W. This sensitivity analysis suggests that the approach is robust.

Running the same analysis over the “Empty the tank” ride gives an average power requirement of 373W for six hours, which is obviously suspect. However, if he was benefiting from a 50% reduction in drag by following a motor vehicle, his estimated average power for the ride would have been 244W – still pretty high, but believable.

Posting rides on Strava provides an independently verifiable adjunct to a biological passport.

Kings and Queens of the Mountains

Screen Shot 2017-11-09 at 18.40.09.png

I guess that most male cyclists don’t pay much attention to the women’s leaderboards on Strava. And if they do it might just be to make some puerile remark about boys being better than girls. From a scientific perspective the comparison of male and female times leads to some interesting analysis.

Assuming both men and women have read my previous blogs on choosing the best time, weather conditions and wind directions for the segment that suits their particular strengths, we come back to basic physics.

KOM or QOM time = Work done / Power = (Work against gravity + Drag x Distance + Rolling resistance x Distance) / (Mass x Watt/kg)

Of the three components of work done, rolling resistance tends to be relatively insignificant. On a very steep hill, most of the work is done against gravity, whereas on a flat course, aerodynamic drag dominates.

The two key factors that vary between men and women are mass and power to weight ratio (watts per kilo).  A survey published by the ONS in 2010, rather shockingly reported that the average British man weighed 83.6kg, with women coming in at 70.2kg. This gives a male/female ratio of 1.19. KOM/QOM cyclists would tend to be lighter than this, but if we take 72kg and 60kg, the ratio is still 1.20.

Males generate more watts per kilogram due to having a higher proportion of lean muscle mass. Although power depends on many factors, including lungs, heart and efficiency of circulation, we can estimate the relative power to weight ratio by comparing the typical body composition of males and females. Feeding the ONS statistics into the Boer formula gives a lean body mass of 74% for men and 65% for women, resulting in a ratio of 1.13. This can be compared against the the useful table on Training Peaks showing maximal power output in Watts/kg, for men and women, over different time periods and a range of athletic abilities. The table is based on the rows showing world record performances and average untrained efforts.  For world champion five minute efforts and functional threshold powers, the ratios are consistent with the lean mass ratio. It makes sense that the ratio should be higher for shorter efforts, where the male champions are likely to be highly muscular. Apparently the relative performance is precisely 1.21 for all durations in untrained people.

Screen Shot 2017-11-08 at 10.23.33

On a steep climb, where the work done against gravity dominates, the benefit of additional male muscle mass is cancelled by the fact that this mass must be lifted, so the difference in time between the KOM and the QOM is primarily due to relative power to weight ratio. However, being smaller, women suffer from the disadvantage that the inert mass of bike represents a larger proportion of the total mass that must be raised against gravity. This effect increases with gradient. Accounting for a time difference of up to 16% on the steepest of hills.

In contrast, on a flat segment, it comes down to raw power output, so men benefit from advantages in both mass and power to weight ratio. But power relates to the cube of the velocity, so the elapsed time scales inversely with the cube root of power. Furthermore, with smaller frames, women present a lower frontal area, providing a small additional advantage. So men can be expected to have a smaller time advantage of around 9%. In theory the advantage should continue to narrow as the gradient shifts downhill.

Theory versus practice

Strava publishes the KOM and QOM leaderboards for all segments, so it was relatively straightforward to check the basic model against a random selection of 1,000 segments across the UK. All  leaderboards included at least 1,666 riders, with an overall average of 637 women and 5,030 men. One of the problems with the leaderboards is that they can be contaminated by spurious data, including unrealistic speeds or times set by groups riding together. To combat this, the average was taken of the top five times set on different dates, rather than simply to top KOM or QOM time.

The average segment length was just under 2km, up a gradient of 3%. The following chart plots the ratio of the QOM time to the KOM time versus gradient compared with the model described above. The red line is based on the lean body mass/world record holders estimate of 1.13, whereas the average QOM/KOM ratio was 1.32. Although there is a perceivable upward slope in the data for positive gradients, clearly this does not fit the data.

Screen Shot 2017-11-09 at 17.54.43

Firstly, the points on the left hand side indicate that men go downhill much more fearlessly than women, suggesting a psychological explanation for the observations deviating from the model. To make the model fit better for positive gradients, there is no obvious reason to expect the weight ratio of male to female Strava riders to deviate from the general population, so this leaves only the relative power to weight ratio. According to the model the QOM/KOM ratio should level off to the power to weight ratio for steep gradients. This seems to occur for a value of around 1.40, which is much higher than the previous estimates of 1.13 or the 1.21 for untrained people. How can we explain this?

A notable feature of the data set was that sample of 1,000 Strava segments was completed by nearly eight times as many men as women. This, in turn reflects the facts that there are more male than female cyclists in the UK and that men are more likely to upload, analyse, publicise and gloat over their performances than women.

Having more men than women, inevitably means that the sample includes more high level male cyclists than equivalent female cyclists. So we are not comparing like with like. Referring back to the Training Peaks table of expected power to weight ratios, a figure of 1.40 suggests we are comparing women of a certain level against men of a higher category, for example, “very good” women against “excellent” men.

A further consequence of having far more men than women is that is much more likely that the fastest times were recorded in the ideal conditions described in my previous blogs listed earlier.

Conclusions

There is room for more women to enjoy cycling and this will push up the standard of performance of the average amateur rider. This would enhance the sport in the same way that the industry has benefited as more women have joined the workforce.

Update on cycling aerodynamics

A recently published paper provides a useful review of competition cycling aerodynamics. It looks at the results of a wide range of academic studies, highlighting the significant advances made in the last 5 to 10 years.

The power required to overcome aerodynamic drag rises with the cube of velocity, so riding at 50km/h takes almost twice as much power as riding at 40km/h. At racing speed, around 80% of a cyclist’s power goes into overcoming aerodynamic drag. This is largely because a bike and rider are not very streamlined, resulting in a turbulent wake.

The authors quote drag coefficients, Cd, of 0.8 for upright and 0.6 for TT positions. These compare with 0.07 for a recumbent bike with fairing, indicating that there is huge room for improvement.

Wind tunnels, originally used in the aerospace and automotive industries, are now being designed specifically for cycling, though no specific standards have been adopted. These provide a simplification of environmental conditions, but they can be used to study air flow for different body positions and equipment. Mannequins are often used in research, as one of the difficulties for riders is the ability to repeat and maintain exactly the same position. Some tunnels employ cameras to track movements. Usually a drag area measurement, CdA, is reported, rather than Cd, thereby avoiding uncertainty due to measurement of frontal area, though this can be estimated by counting pixels in a image.

One thing that makes cycling particularly complex is the action of pedalling. This creates asymmetric high drag forces as one leg goes up and the other goes down, resulting in variations of up to 20% relative to a horizontal crank position.

Cycling has been studied using computational fluid dynamics, helping to save on wind tunnel costs. These use fine mesh models to calculate details of flow separation and pressure variations across the cyclist’s body. The better models are in good agreement with wind tunnel experiments.

Practical advice

Cycling speed is a maximum optimisation problem between aerodynamic and biomechanical efficiency

Ultimately, scientists need to do field tests. The extensive use of power meters allows cyclists to experiment for themselves. The authors provide two practical ways to separate the coefficient of rolling resistance, Crr,  from CdA. One based on rolling to a halt and the other using a series of short rides at constant speed.

Minimising aerodynamic resistance through rider position is one of the most effective ways to improve performance among well-trained athletes

Compared with riding upright on the hoods, moving to the drops saves 15% to 20% while adopting a TT position saves 30% to 35%. Studies show quite a lot of variance in these figures, as the results depend on whether the rider is pedalling, as well as body size. The following quote suggests that when freewheeling downhill in an aero tuck, your crank should be horizontal (unless you are cornering).

Current research suggests that the drag coefficient of a pedalling cyclist is ≈6% higher than that of a static cyclist holding a horizontal crank position

The authors quote the figures for CdA of 0.30-0.50 for an upright position, 0.25 to 0.30 on the drops and 0.20-0.25 for a TT position. Variation is largely, but not only, due to changes in frontal area, A. Unfortunately, relatively minor changes in position can have large effects on drag, but the following effects were noted.

Broker and Kyle note that rider positions that result in a flat back, a low tucked head and forearms positioned parallel to the bicycle frame generally have low aerodynamic drag. Wind tunnel investigations into a wide range of modifications to standard road cycling positions by Barry et al. showed that that lowering the head and torso and bringing the arms inside the silhouette of the hips reduced the aerodynamic drag.

Bike frames, wheels, helmets and skin suits are all designed with aerodynamics in mind, while remaining compliant with UCI rules. Skin suits are important, due to their large surface areas. By delaying airflow separation, textured fabrics reduce wake turbulence, resulting in as much as a 4% reduction in drag.

In race situations, drafting skills are beneficial, particularly behind a larger rider. While following riders gain a significant benefit, it has been shown that the lead rider also accrues a small advantage of around 3%. It is best to overtake very closely in order to take maximal advantage of lateral drafting effects.

For a trailing cyclist positioned immediately behind the leader, drag reduction has been reported in the range of 15–50 % and reduces to 10–30 % as the gap extends to approximately a bike length… The drafting effect is greater for the third rider than the second rider in a pace-line, but often remains nearly constant for subsequent riders

For those interested in greater detail, it is well worth looking at the full text of the paper, which is freely available.

Reference

Riding against the wind: a review of competition cycling aerodynamics, Timothy N. CrouchEmail authorDavid BurtonZach A. LaBryKim B. Blair, Sports Engineering, June 2017, Volume 20, Issue 2, pp 81–110