Time to be aerodynamic

The Covid-19 epidemic provided a huge boost to the Zwift streaming service. Confined by a global lockdown, cyclists freed themselves from the boredom of pedalling on a static turbo trainer by logging into one of a broadening range of online virtual worlds. Zwift racing has become particularly popular. While it is relatively straightforward to simulate variations in gradient and even the effects of drafting, it is not possible for riders to demonstrate superior bike handling skills. Nor can racers benefit from adopting a superior aerodynamic position on the bike, in fact this may prove to be a disadvantage.

Setting aside e-doping suspicions, such as riders understating their weights, in the artificial world of a Zwift race, the outcome largely comes down the the ability to sustain a high level of power (watts per kilo). The engagingly competitive nature of simulated races encourages everyone to push their limits. However, since Zwift offers no penalty against maintaining a non-aerodynamic body position on your trainer, it is quite possible that regular Zwifters might become habituated to riding in position that is far from optimal for the road.

Fresh aerodynamics

Once out in the fresh air again, many riders may have noticed improvements in the levels of power they are able to sustain, thanks to the high levels of exertion required to compete on Zwift. But in the real world, when it comes to beating other riders in a race or a time trial, the principle force a rider has to overcome is aerodynamic drag, not electromagnetic resistance.

Maximum speed is attained by adopting a riding position that provides the optimal tradeoff between the ability to generate power and a low level of aerodynamic drag. Drag depends on a rider’s CdA, which represents the drag coefficient multiplied by frontal area. Since power rises with the cube of velocity, there comes a point where it is better to compromise on power in order to reduce frontal area. This is the key to time trialing and successful breakaways.

When the race season begins, skilful and more aerodynamic racers will be able to benefit from drafting in the huge wind shadow created by Zwift diesels, while offering back much less assistance when they pull through. So after prolonged training on Zwift, racers and time trialists really need to focus on improving their aerodynamics

There are various ways to reduce drag, starting withs some basics as described in an earlier blog. Post ride analysis can be performed using Golden Cheetah, BestBikeSplit or MyWindSock. There is also a range of devices that claim to offer real time measurement of CdA. These have been primarily targeted at the TT/triathlon market, but there’s no doubt that these could be incredibly useful for both training or even, perhaps, a race breakaway. Cycling Weekly recently reviewed the Notio device, but, while useful, these tools remain expensive and a bit clunky.

Whatever you choose to do, stay safe and stay aero.

Author: science4performance

I am passionate about applying the scientific method to improve performance

One thought on “Time to be aerodynamic”

  1. “… skilful and more aerodynamic racers will be able to benefit from drafting in the huge wind shadow created by Zwift diesels..”

    Quite possibly my favourite line! As a lightweight aero rider, it gave me a good chuckle! 🙂

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: