Fuelling for Cycling Performance

Chris Froome (LaPresse)

Some commentators were skeptical of Team Sky’s explanation for Chris Froome’s 80km tour-winning attack on stage 19 of the Giro. His success was put down to the detailed planning of nutrition throughout the ride, with staff positioned at strategic refuelling points along the entire route.  If you consider how skeletal the riders look after two and a half weeks of relentless competition, along with the limits on what can be physically absorbed between stages, the nutrition story makes a lot of sense. Did Yates, Pinot and Aru dramatically fall by the wayside simply because they ran out of energy?

The best performing cyclists have excellent balancing skills. This includes the ability to match energy intake with energy demand. The pros benefit from teams of support staff monitoring every aspect of their nutrition and performance. However, many serious club-level cyclists pick up fads and snippets of information from social media or the cycling press that lead them to try out all kinds ideas, in an unscientific manner, in the hope of achieving an improvement in performance. Some of these activities have potentially harmful effects on the body.

Competitive riders can become obsessed with losing weight and sticking to extremely tough training schedules, leading to both short-term and long-term energy deficits that are detrimental to both health and performance. One of the physiological consequences can be a reduction in bone density, which is particularly significant for cyclists, who do not benefit from gravitational stress on bones, due to the non-weight-bearing nature of the sport. In a recent paper, colleagues at Durham University and I describe an approach for identifying male cyclists at risk of Relative Energy Deficit in Sport (RED-S).

You need a certain amount of energy simply to maintain normal life processes, but an athlete can force the body into a deficit in two ways: by intentionally or unintentionally restricting energy intake below the level required to meet demand or by increasing training load without a corresponding increase in fuelling.


Our bodies have a range of  ways to deal with an energy deficit. For the average, slightly overweight casual cyclist, burning some fat is not a bad thing. However, most competitive cyclists are already very lean, making the physiological consequences of an energy deficit more serious. Changes arise in the endocrine system that controls the body’s hormones. Certain processes can shut down, such as female menstruation, and males can experience a reduction in testosterone. Sex steroids are important for maintaining healthy bones. In our study of 50 male competitive cyclists, the average bone density in the lumbar spine, measured by DXA scan, was significantly below normal. Some relatively young cyclists had the bones of a 70 year old man!

The key variable associated with poor bone health was low energy availability, i.e. male cyclists exhibiting  RED-S. These riders were identified using a questionnaire followed by an interview with a Sports Endocrinologist. The purpose of the interview was to go through the responses in more detail, as most people have a tendency to put a positive spin on their answers. There were two important warning signs.

  • Long-term energy deficit: a prolonged significant weight reduction to achieve “race weight”
  • Short-term energy deficit: one or more fasted rides per week

Among riders with low energy availability, bone density was not so bad for those who had previously engaged in a weight-bearing sport, such as running. For cyclists with adequate energy availability, those with vey low levels of vitamin D had weaker bones. Across the 50 cyclists, most had vitamin D levels below the level of 90 nmol/L recommended for athletes, including some who were taking vitamin D supplements, but clearly not enough. Studies have shown that the advantages of athletes taking vitamin D supplements include better bone health, improved immunity and stronger muscles, so why wouldn’t you?

In terms of performance, British Cycling race category was positively related with a rider’s power to weight ratio, evaluated by 60 minute FTP per kg (FTP60/kg). Out of all the measured variables, including questionnaire responses, blood tests, bone density and body composition, the strongest association with FTP60/kg was the number of weekly training hours. There was no significant relationship between percentage body fat and FTP60/kg. So if you want to improve performance, rather than starving yourself in the hope of losing body fat, you are better off getting on your bike and training with adequate fuelling.

Cyclists using power meters have the advantage of knowing exactly how many calories they have used on every ride. In addition to taking on fuel during the ride, especially when racing, the greatest benefits accrue from having a recovery drink and some food immediately after completing rides of more than one hour.

For those wishing to know more about RED-S, the British Association of Sports and Exercise Medicine has provided a web resource.

A related blog will explore the machine learning and statistical techniques used to analyse the data for this study.


Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists, BMJ Open Sport & Exercise Medicine,https://doi.org/10.1136/bmjsem-2018-000424

Relative Energy Deficiency in Sport, British Association of Sports and Exercise Medicine

Synergistic interactions of steroid hormones, British Journal of Sports Medicine

Cyclists: Make No Bones About It, British Journal of Sports Medicine

Male Cyclists: bones, body composition, nutrition, performance, British Journal of Sports Medicine


Froome’s data on Strava

Screen Shot 2018-01-29 at 14.59.39

Chris Froome has been logging data on Strava since the beginning of the year. He had already completed over 4,500km, around Johannesburg, in the first four weeks of January. The weather has been hot and he has been based at an altitude of around 1350m. Some have speculated that he has been replicating the conditions of a grand tour, so that measurements can be made that may assist in his defence against the adverse analytical finding made at last year’s Vuelta.

Whatever the reasons, Froome chose to “Empty the tank” with epic ride on 28 January, completing 271km in just over six hours at an average of 44.8kph. The activity was flagged on Strava, presumably because he completed it suspiciously fast. For example, he rode the 20km Back Straight segment at 50.9kph, finishing in 24:24, nearly four minutes faster than holder of the the KOM: a certain Chris Froome. Since there was no significant wind blowing, one can only assume he was being motor-paced.

One interesting thing about rides displayed publicly on Strava is that anyone can download a GPX file of the route, which shows the latitude, longitude and altitude of the rider, typically at one second intervals. Although Froome is one of the professional riders who prefer to keep their power data private, this blog explores the possibility of estimating power from the  GPX file. The plan is similar to the way Strava estimates power.

  1. Calculate the rider’s speed from changes in position
  2. Calculate the gradient of the road from changes in altitude
  3. Estimate air density from historic weather reports
  4. Make assumptions about rider/bike mass, aerodynamic drag, rolling resistance
  5. Estimate power required to ride at estimated speed

Knowledge is power


An interesting case study is Froome’s TT Bike Squeeeeze from 6 January, which included a sustained 2 hour TT effort. Deriving speed and gradient from the GPX file is straightforward, though it is helpful to include smoothing (say, a five second average) to iron out noise in the recording. It is simple to check the average speed and charts against those displayed on Strava.

Several factors affect air density. Firstly, we can obtain the local weather conditions from sources, such as Weather Underground. Froome set off at 6:36am, when it was still relatively cool, but he Garmin shows that it warmed up from 18 degrees to 40 degrees during the ride. Taking the average of 29 for the whole ride simplifies matters. Air pressure remained constant at around 1018hPa, but this is always quoted for sea level, so the figure needs to be adjusted for altitude. Froome’s GPS recorded an altitude range from 1242m to 1581m. However we can see that his starting altitude was recorded as 1305m, when the actual altitude of this location was 1380m. We conclude that his average altitude for the ride, recorded at 1436m, needs to be corrected by 75m to 1511m and opt to use this as an elevation adjustment for the whole ride. This is important because the air is sufficiently less dense at this altitude to have a noticeable impact on aerodynamic drag.

An estimate of power requires some additional assumptions. Froome uses his road bike, TT bike and mountain bike for training, sometimes all in the same ride, and we suspect some rides are motor-paced. However, he indicates that the 6 January ride was on the TT bike. So a CdA of 0.22 for drag and a Crr of 0.005 for rolling resistance seem reasonable. Froome weighs about 70kg and fair assumptions were taken for the spec of his bike. Finally, the wind was very light, so it was ignored in the calculations.

Screen Shot 2018-01-29 at 14.32.39

Under these assumptions, Froome’s estimated average power was 205W. The red shaded area marks a 2 hour effort completed at 43.7kph, with a higher average power of 271W. His maximal average power sustained over one hour was 321W or 4.58W/kg. There is nothing adverse about these figures; they seem to be eminently within the expected capabilities of the multiple grand tour winner.

Of course, quite a few assumptions went into these calculations, so it is worth identifying the most important ones. The variation of temperature had a small effect: the whole ride at 18 degrees would have required an average of 209W or, at 40 degrees, 201W. Taking account of altitude was important: the same ride at sea level would have required 230W, but the variations in altitude during the ride were not significant. At the speeds Froome was riding, aerodynamics were important: a CdA of 0.25 would have needed 221W, whereas a super-aero CdA of 0.20 rider could have done 195W. This sensitivity analysis suggests that the approach is robust.

Running the same analysis over the “Empty the tank” ride gives an average power requirement of 373W for six hours, which is obviously suspect. However, if he was benefiting from a 50% reduction in drag by following a motor vehicle, his estimated average power for the ride would have been 244W – still pretty high, but believable.

Posting rides on Strava provides an independently verifiable adjunct to a biological passport.