
As the initial global wave of COVID-19 infections is brought under control, the world is moving into a phase of extensive testing, tracking and tracing, until a vaccine can be found. The preservation of personal privacy must be paramount in these initiatives.
The UK government’s target of performing 100,000 tests a day by the end of April 2020 provided a fine example of Goodhart’s law: “When a measure becomes a target, it ceases to be a good measure”. One tragic consequence was the willingness, even encouragement, to define just about anything as a “completed test”, including the action of simply dispatching a kit by post. This has discouraged the distinguish between different types of test: antigen or antibody, nasal swab or blood test, pin-prick or venous sample, laboratory analysis or on-the-spot result.
For those who suspect they might have been exposed to COVID-19, an antibody test is the most useful. Although there has not been time to gather sufficient information to be absolutely sure, the detection of antibodies in the blood should provide immunity from infection, at least in the short term, unless the virus mutates sufficiently to bypass the immune response. Private tests are available from providers, such as Forth, where reliable results of IgG antibodies are provided by laboratory tests performed using the Abbot Architect method.
A second area where the UK government seems to be going wrong is in hiring thousands of people to carry out intrusive tracking and tracing. Not only is this hugely inefficient, it is also a massive unnecessary invasion of personal privacy. That a data leak occurred before it even started hardly inspires confidence.
Privacy Preserving Contact Tracing
A team of epidemiologist and cryptographers called DP-3T has released open source software that makes use of Bluetooth messages exchanged between mobile phones to track and trace COVID-19 infections entirely anonymously. It does not require users to surrender any personal information or location data. The approach is the basis for the technology announced jointly by Apple and Google.
The method is explained very nicely in this video 3Blue1Brown or in comic form by Nicky Case. This is a summary of how it works. Once you download a privacy preserving app onto your phone, it transmits random numbers over Bluetooth, at regular time intervals, and simultaneously listens for the random numbers of other users. Since the numbers are random, they contain no information about the you. Your phone locally maintains a list of your transmitted random numbers. It also stores locally a list of all numbers received, possibly including a timestamp and the Bluetooth signal strength, which gives some information about the proximity of the other user. Items older than, say, 14 days can be deleted from both lists.
If a person falls ill and tests positive for COVID-19 antigens, that person can voluntarily, with the permission of a healthcare professional, anonymously upload the list of transmitted random numbers to a central database. The phone app of every user periodically checks this database against its local list of received messages. If a match is detected, the app can identify the date, time and duration of contact, along with an estimate of proximity. This allows the app to advise a user to “self-isolate” for an appropriate period. This matching can all be done locally on the phone.
If set up appropriately, neither Google nor Apple nor any government body would be able to identify any particular individual. Privacy is preserved. No human trackers or tracers are required. No ankle bracelets or police guards are necessary. The system is entirely voluntary, but if sufficient users join up, say, 60% of those susceptible, it can still have a significant impact in controlling the spread of the virus. This is the correct way forward for a free and democratic society.