Active Inference

Active Inference is a fascinating and ambitious book. It describes a very general normative approach to understanding the mind, brain and behaviour, hinting at potential applications in machine learning and the social sciences. The authors argue that the ways in which living beings interact with the environment can be modelled in terms of something called the free energy principle.

Active Inference builds on the concept of a Bayesian Brain. This is the idea that our brains continually refine an internal model of the external world, acting as probabilistic inference machines. The internal generative model continually predicts the state of the environment and compares its predictions with the inputs of sensory organs. When a discrepancy occurs, the brain updates its model. This is called perception.

But Active Inference goes further my recognising that living things can interact with their environments. Therefore an alternative way to deal with a discrepancy versus expectations is to do something that modifies the world. This is called action.

Variational Free Energy

Active Inference, Parr, Pezzulo, Friston

Either you change your beliefs to match the world or you change the world to match your beliefs. Active Inference makes this trade off by minimising variational free energy, which improves the match between an organism’s internal model and the external world.

The theory is expressed in elegant mathematical terms that lend themselves to systematic analysis. Minimising variational free energy can be considered in terms of finding a maximum entropy distribution, minimising complexity or reducing the divergence between the internal model and the actual posterior distribution.

Expected free energy

Longer term planning is handled in terms of expected free energy. This is where the consequences of future sequences of actions (policies) are evaluated by predicting the outcomes at each stage. The expected free energy of each policy is converted into a score, with the highest score determining the policy the organism expects to pursue. The process of selecting policies that improve the match with the priors pertaining to favoured states is called learning.

Planning is cast in terms of Bayesian inference. Once again the algebraic framework lends itself to a range of interpretations. For example, it automatically trades off information gain (exploration) against pragmatic value (exploitation). This contrasts with reinforcement learning, which handles the issue more heuristically, by trial and error, combined with the notion of a reward.


The book describes applications in neurobiology, learning and perception. Although readers are encouraged to apply the ideas to new areas, a full understanding of the subject demands the dedication to battle through some heavy duty mathematical appendices, covering Bayesian inference, partially observed Markov Decision Processes and variational calculus.

Nevertheless the book is filled with thought provoking ideas about how living things thrive in the face of the second law of thermodynamics.

Author: science4performance

I am passionate about applying the scientific method to improve performance

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: